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Abstract

Silver nanoparticles (AgNPs) containing consumer products have been proliferating in the

market due to its unique antimicrobial property, however, lack of in-depth knowledge about

their potential effect on human health in a longer run is of great concern. Therefore, we

investigated dose-dependent in vivo effect of AgNPs using Drosophila as a model system.

Drosophila, a genetically tractable organism with distinct developmental stages, short life

cycle and significant homology with human serves as an ideal organism to study nanomater-

ial-mediated toxicity. Our studies suggest that ingestion of AgNPs in Drosophila during adult

stage for short and long duration significantly affects egg laying capability along with

impaired growth of ovary. Additionally, dietary intake of AgNPs from larval stage has more

deleterious effects that result in reduced survival, longevity, ovary size and egg laying capa-

bility at a further lower dosage. Interestingly, the trans-generational effect of AgNPs was

also observed without feeding progeny with AgNPs, thereby suggesting its impact from pre-

vious generation. Our results strongly imply that higher doses of AgNPs and its administra-

tion early during development is detrimental to the reproductive health and survival of

Drosophila that follows in generations to come without feeding them to AgNPs.

1. Introduction

The outstanding feature that makes nanoparticles behave differently than their bulk counter-

parts is their relative size in the scale of nanometers. The altered property of nano-sized parti-

cles is attributed mainly to their highly increased surface area to volume ratio than their bulk

counterparts [1]. In the past few years, owing to these extraordinary properties, nanoparticles

have gained significant attention and became part of many consumer products [2]. Nanoparti-

cles hold a great promise to improve the quality and efficiency of consumer goods. From

ancient time, silver has been well acknowledged for its extraordinary bacteriocidal property

making it part of food and medicine [3–7]. With the advancement and better understanding

of nanotechnology, silver is being specifically engineered as silver nanoparticles (AgNPs) and

used in a wide variety of consumer products [8] such as cosmetics [9–10], food packaging,
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wound dressing [11–13], biomedical devices [14–15], clothing, disinfectant products, textiles

[16] and also for diagnostic and therapeutic applications [4, 17–18]. The exact mechanism by

which AgNPs cause antimicrobial effect is not fully elucidated yet, however, it has been pro-

posed that the interaction between AgNPs and bacterial cell results in generation of reactive

oxygen species (ROS) and cell lysis [19–20]. AgNPs can access to the human body through

direct skin contact or ingestion, and have the potential to subsequently propagate to the sec-

ondary target organs where they damage the cellular structures and DNA, causing tissue injury

[4].

In addition, as AgNPs are extremely reactive, they themselves are considered a ROS genera-

tor. Most of the preliminary evidence from in vitro studies has proposed that AgNPs causes

disruption of mitochondrial respiratory chain and thereby eliciting oxidative stress [21–28].

AgNPs are also reported to damage mammalian germ cells and have the potential to cause

impairment of reproductive functions [29]. Limited number of in vivo studies have been per-

formed which evidently show that nanoparticles represent a serious health threat [30–31] and

may induce oxidative stress, apoptotic response [32–34] and expression of heat shock proteins

[18]. A study in rat showed accumulation of AgNPs in different organs that can cause severe

damage to these organs [35]. Additionally, AgNPs intake in Drosophila larvae can induce pig-

mentation defects, reduction in body size, loss of body weight and poor locomotor ability of

adult flies [36–37]. All these reports on AgNPs strongly suggest that the negative impact of

these nano sized particles on living organisms are of a serious concern, particularly if used in

abundance.

Despite uncountable benefits of AgNPs, a systematic dose-dependent study to monitor

impact of AgNPs exposure on human health is warranted. Therefore, with this mandate, we

carried out in vivo dosage study of AgNPs to understand its effect on survival and fertility.

Besides understanding dosage effect of AgNPs on adult parental population and progeny, a

study of trans-generational effect is also very important to evaluate its long term impact. The

experimental limitations and ethical restrictions involving in-vivo studies in higher mamma-

lian system or human make trans-generational study challenging and therefore, Drosophila
can serve as one of the most suitable model to address trans-generational effect of AgNPs.

Using Drosophila as a model system, present study also aimed towards understanding system-

atic dose-dependent implications of ingestion of AgNPs on fertility and survival in few

generations.

2. Materials and methods

2.1 Fly strain and culture

Wild-type D. melanogaster flies (Oregon-R) were raised on standard food containing maize

flour, yeast, sugar, agar-agar and propionic acid at 25±1˚C.

2.2 Characterization of AgNPs

AgNPs were purchased from Sun Innovations Corp., USA (Item# SN1101). Characterization

of these commercially available AgNPs such as physical dimension, agglomeration state used

in the present study has been reported previously [37]. However, to validate the quality and

stability of the AgNPs used in our assessment, we characterized the particle size, size distribu-

tion, shape, composition, average crystallite size and stability of AgNPs using the measure-

ments as follows: the average hydrodynamic diameter of monodispersed AgNPs was evaluated

by DLS (Malvern Instrument Zetasizer Nano-ZS, Malvern, USA). The morphological mea-

surement of AgNPs was performed by 200 keV Technai G2 UG20 TEM using a tungsten fila-

ment. Copper grid was used and the suspension of AgNPs was made in distilled water. The
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XRD measurement was carried out using Bruker D8 Advance X-ray diffractometer. The X-

rays were produced using a sealed tube and the wavelength of X-ray was 0.154 nm (Cu K-

alpha). The X-rays were detected using a fast counting detector-based on Silicon strip technol-

ogy (Bruker Lynx Eye detector). The stability of AgNPs in deionized water was estimated

using zeta potential measurement (Malvern Instrument Zetasizer Nano-ZS, Malvern, USA).

2.3 Administration of AgNPs in Drosophila food

A stock of 5% (w/v) AgNPs suspension in distilled water was sonicated (QSONICA Sonicators)

at a pulse of 20 seconds, at an amplitude of 30% for 30 minutes to get a homogenous dispersion

[37]. For analyzing the effect of different doses of AgNPs ingestion on fertility and survival,

particles were sonicated in deionized water to make final doses of 5, 25, 50 and 250mg/L in

partially cooled fly food. AgNPs supplemented food was stored in appropriate condition to

avoid exposure to light.

For parental adult feeding (P), three batches of freshly eclosed virgin female and male flies

were fed separately on different doses of AgNPs-supplemented food for 3, 10 and 30 days.

After feeding flies with different doses of AgNPs-supplemented food for respective time points,

they were mated two days prior to egg laying. Eggs laid (F1) were transferred into the vials con-

taining food without (control) and with AgNPs. Thus, four different treatments were given to

F1 progeny i.e. referred as P-L- (Parents not fed; Larvae not fed), P-L+ (Parents not fed; Larvae

fed), P+L- (Parents fed; Larvae not fed), P+L+ (Parents fed; Larvae fed) in subsequent text. A

schematic illustration of these experimental conditions is shown in Fig 1.

Similarly, for trans-generational studies, the F1 adult progeny eclosing from the above treat-

ments at different doses of AgNPs were allowed to mate and their eggs were transferred into

the vials containing food without AgNPs. Thus, for F2 generation, the treatment conditions

are referred as P-L-L- (Parents not fed; F1 Larvae not fed; F2 Larvae not fed), P-L+L- (Parents

not fed; F1 Larvae fed; F2 Larvae not fed), P+L-L- (Parents fed; F1 Larvae not fed; F2 Larvae

not fed), P+L+L- (Parents fed; F1 Larvae fed; F2 Larvae not fed) where F2 larvae were

untreated. Here P-L- and P-L-L- represents control for F1 and F2 generation respectively.

Three sets of independent experiments were carried out for each assay. 75 eggs transferred

in each food vial with at least 5 vials for each condition. So a total of 375 eggs for each condi-

tion were considered.

2.4 Analysis of egg laying capability

Female virgins and male flies were collected within 8 hours of eclosing, aged on different doses

of AgNPs supplemented food followed by mating for 2 days on AgNPs food prior to monitor-

ing their egg laying capability. Chambers housed with a set of 50 mated females in two repli-

cates were allowed to lay eggs on standard fly food (without AgNPs) for four hours at 25±1˚C.

Number of eggs laid by females within four hours were counted to determine their rate of egg

laying.

2.5 Assessment of Drosophila development and survival

Both control and AgNPs treated flies were allowed to lay eggs and 75 eggs from each condition

were transferred in vials containing food supplemented without and with different doses of

AgNPs. The larval hatch rate was determined by counting the number of 1st instar larvae

hatched within 24–28 hours after oviposition. Development upto pre-pupal and pupal stage

was determined by counting the number of pupae formed out of 75 eggs transferred in food

vials. Similarly, adult eclosion rate was determined by scoring the number of adult flies

emerged from the pupae.
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2.6 Life span assessment

For longevity of F1 flies, freshly eclosed non-mated female flies were collected in the group of

20 from each condition (P-L-/ P-L+/ P+L-/ P+L+). Flies were transferred into fresh food vial

(without AgNPs) at an interval of 2 days and numbers of dead flies were recorded for 30 days.

There were 4 replicates for each condition.

2.7 Statistics

Statistics was performed in IBM SPSS statistical package (version 22) for each experiment con-

ducted. Statistical analysis was performed using analysis of variance (ANOVA) followed by

Tukey’s post hoc test. The difference among treatment conditions were compared by Tukey—

Kramer Minimum Significant Difference test (MSDα0.05) [38].

Fig 1. Schematic representation of AgNPs treatment conditions.

https://doi.org/10.1371/journal.pone.0178051.g001
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3. Results

3.1 Physico-chemical characterization of AgNPs

The AgNPs used for the present study (purchased from Sun Innovation Corp., USA) have

been characterized and reported previously [37]. However, in the present study we have fur-

ther confirmed its physico-chemical properties by using different characterization techniques.

The particle size was measured by DLS and the average hydrodynamic size of mono-dis-

persed sample containing AgNPs was estimated to be 252.9 nm (Fig 2A). Scattered light inten-

sity from AgNPs was measured at 25˚C for 60 min (Malvern Instrument Zetasizer Nano-ZS,

Malvern, USA). Further, TEM measurement revealed that AgNPs are spherical in shape with a

range of 20–100 nm (Fig 2B). AgNPs have been reported to display strong tendency to agglom-

erate [37] and we also observed the same in TEM images.

The typical X-ray diffraction pattern of the AgNPs is shown in (Fig 2C). The XRD data for

AgNPs shows diffraction peaks at 2θ = 38.15, 44.34, 64.5, 77.45, 81.6 degrees which can be

indexed to (111), (200), (220), (311), (222) planes of pure silver. XRD pattern confirms that the

main composition of the nanoparticles is silver. The results of the curve fitting of the (111)

Fig 2. Characterization of AgNPs. (A) An average hydrodynamic size of mono-dispersed sample containing AgNPs is 252.9 nm by DLS

measurements (B) TEM image of AgNPS in suspension on Cu grid are in the range of 20–100 nm and spherical in shape. Majority of these

particles fall in the size range of 20-50nm (C) X-ray diffraction measurements displayed the average crystallite size to be ~ 47 nm which is

obtained by using Scherrer’s formula. (D) Zeta potential value of -27.4 mv displayed moderate stability of AgNPs.

https://doi.org/10.1371/journal.pone.0178051.g002
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peak gives a full width at half maximum (FWHM) value to be 0.2˚. This included an instru-

mental broadening of 0.03˚. The average grain size was found to be 47 nm, calculated by Scher-

rer’s formula (Fig 2C).

To evaluate the stability of the AgNPs in suspension, zeta potential measurement was done

by Malvern Instrument Zetasizer Nano-ZS (Malvern, USA). Zeta potential value was −27.4 mv

with poly dispersity index 0.5 that ensured moderate stability and agglomeration (Fig 2D).

3.2 Dose-dependent effect of AgNPs on egg laying capability of

Drosophila

The effect of AgNPs on egg laying capability of adult flies was monitored by counting their

eggs after feeding different doses of AgNPs supplemented food for short 3 and long 10, 30

days. A schematic representation of the experimental conditions is shown in Fig 1.Freshly

eclosed female virgin flies were collected and fed with food supplemented without (control)

and with different doses of AgNPs (5 mg/L, 25mg/L, 50mg/L and 250 mg/L) for 3, 10 and 30

days. Thereafter, two days prior to egg laying these females were mated with the age matched

males that were also fed with AgNPs for respective days.

After feeding flies with different doses of AgNPs supplemented food for 3 days, eggs laid in

4 hours by the females were scored. We did not find any difference in egg laying capability of

flies not fed (control) and fed to different doses of AgNPs (Fig 3A).

Further, egg laying capability of flies fed with different doses of AgNPs for 10 days was

monitored. The egg laying capability was found to be decreased in a dose-dependent manner

as compared to the females aged on food without AgNPs i.e. control (Fig 3A). However, below

50mg/L of AgNPs dosage, the egg laying capability of female flies had no effect and is compara-

ble to that of control female flies.

To further understand the effect of prolonged ingestion of AgNPs on fertility of adult flies,

a different batch of newly emerged flies was fed on AgNPs supplemented food for 30 days. It

has been reported previously that the egg laying capability of wild-type female flies gets com-

promised with age [39–40].Similarly, we also observed reduction in egg laying capability of

control flies with age. Interestingly, ingestion of higher doses of AgNPs for prolonged time

period further pronounced this age related compromised egg laying capability of the treated

flies (Fig 3A).

To monitor if the compromised egg laying capability of AgNPs fed 3 days, 10 days and 30

days old flies is due to its impact on gonadal development ovary of these adult flies was dis-

sected. No difference in the ovary size was observed in the flies aged for 3 days on AgNPs diet,

however, a notable difference in the size of ovary was seen in flies fed with higher doses of

AgNPs for longer period i.e., upto 10 and 30 days (Fig 3B and 3C). Our results suggest that

prolonged ingestion of AgNPs at higher doses, in particular at a dosage of 250mg/L impairs

egg laying capability that could be due to retarded growth of ovary with the formation of just

one or two ovariole.

Further, to understand if the reduced size of ovary and thereby compromised egg laying

capability of the flies fed with higher dose of AgNPs is due to deposition of AgNPs within

these tissues, we observed sections of ovary using TEM. However, we could not find any depo-

sition of AgNPs inside the ovary. These observations indicate that reduction in ovary size and

egg laying capability is the systemic side effect of AgNPs ingestion.

3.3 AgNPs ingestion impairs growth and longevity of F1 flies

To find out development of the eggs laid by adult flies (P) fed with different doses of AgNPs

for 3, 10 and 30 days, these eggs were transferred in food with various experimental conditions

Dose-dependent Effect of silver nanoparticles (AgNPs) on fertility and survival of Drosophila

PLOS ONE | https://doi.org/10.1371/journal.pone.0178051 May 24, 2017 6 / 14

https://doi.org/10.1371/journal.pone.0178051


(P-L- i.e., both parents and larvae not fed; P+L- i.e., parents fed and larvae not fed; P-L+ i.e.,

parents not fed but larvae fed; P+L+ i.e., both parents and larvae fed). Following development

of the eggs, pupal count and adult eclosion was monitored in different experimental conditions

by calculating percentage of larvae that could reach the pre-pupal, pupal and adult stages. We

found that AgNPs ingestion during the larval stage resulted in dose-dependent reduction in

pre-pupae, pupae formation and adult eclosion (Fig 4A, 4B and 4C). We could get comparable

results for pre-pupal and pupal formation from the parents fed with AgNPs for 3, 10 and 30

days; therefore, in the present manuscript the results are shown only for 10 days of adult

feeding.

In addition to effects of AgNPs on different developmental stages, the adverse effect of lar-

val AgNPs ingestion was also reflected on the longevity of F1 adult flies in a dose-dependent

manner (Fig 4D). At 50mg/L of AgNPs, the number of flies that could survive was reduced to

50% within 10 days post eclosion; however, control flies were healthy and alive for 30 days.

These results are very interesting as larval ingestion of AgNPs from 1st instar onwards has

impact on survival and longevity irrespective of feeding their parents with AgNPs.

Fig 3. Dose dependent effect of AgNPs on egg laying and ovary development. (A) Egg laying capability of flies aged for 3, 10 and 30

days without (control) and with AgNPs at different doses (5mg/L, 25mg/L, 50mg/L and 250mg/L) (B) A notable difference in the size of ovary

was observed in the flies aged on control and AgNPs supplemented food for 10 days and (C) 30 days in a dose-dependent manner.

Significance was calculated by using an analysis of variance (ANOVA) followed by Tukey-Kramer post hoc test (MSD α0.05 = 116.87).

https://doi.org/10.1371/journal.pone.0178051.g003
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3.4 Lower dosage of AgNPs ingestion early during development affects

egg laying capability

The F1 adult eclosing from larvae fed with different doses of AgNPs displayed dose dependent

decline in egg laying capability regardless of parents not fed (P-L+) or fed (P+L+) to AgNPs. It

is interesting to observe that larval ingestion of AgNPs even at lower dose (25mg/L) could dis-

play compromised egg laying capability of F1 progeny. It is noteworthy that this dosage is safe

for parental adults (Fig 5A). A significant decline in egg laying capability was observed at

50mg/L AgNPs. These results suggest that dietary intake of even lower dosage of AgNPs at

early developmental stages has an impact as compared to the feeding during adult stage. We

could also observe dose-dependent reduction in ovary size in the females eclosed from larvae

fed with AgNPs at early larval stages (Fig 5B).

Dietary intake of AgNPs at larval stage also resulted in impaired oviposition capacity and

development of ovary. However, we did not observe accumulation of AgNPs in ovary of these

adults as well.

Fig 4. AgNPs ingestion during larval stage interferes with the growth and survival of F1 progeny. (A) Eggs reached to pre-pupal

stage (B) pupa formation (C) adult eclosion rate and (D) longevity of F1 flies in P+L+ condition. Comparable results were observed for P-L

+ and P+L+ conditions; P-L- represents control. Significance was calculated by using an analysis of variance (ANOVA) followed by Tukey-

Kramer MSD post hoc test (MSD α0.05: Pre-pupal count = 14.62; Pupal count = 27.06; Adult eclosion = 27.06; Longevity = 35.34).

https://doi.org/10.1371/journal.pone.0178051.g004
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3.5 Trans-generational effect of AgNPs ingestion early during

development

To evaluate if oral intake of AgNPs early during development can have trans-generational

effect, we monitored growth and survival of F2 generation without feeding them with AgNPs.

F1 adult flies eclosing out from (P-L-; P-L+; P+L- and P+L+ conditions) were fed with differ-

ent doses of AgNPs (5mg/L, 25mg/L, 50mg/L and 250mg/L). Eggs from these flies were devel-

oped on normal food that is devoid of AgNPs to monitor trans-generational effect.

We found significant reduction in survival of F2 progeny in the treatment conditions i.e.,

P-L+L- (Parents not fed (P-), F1 fed during early larval stage (L+), F2 not fed (L-) and P+L+L-

(Parents fed (P+), F1 fed during early larval stage (L+), F2 not fed (L-).The percentage of eggs

that hatched to 1st instar larvae were comparable in all the treatment conditions i.e. P-L-L-;

P-L+L-; P+L-L- and P+L+L-(Fig 6A). However, the percentage of 1st instar larvae that reached

to pre-pupal stage declined significantly in two conditions i.e. P-L+L- and P+L+L-, suggesting

that maximum mortality in F2 generation occurs between 2nd to 3rd larval instar only when

Fig 5. Impact of AgNPs ingestion at larval stage on egg laying and ovary development. (A) Egg laying

capability of F1 female flies reduces substantially at higher dose. (B) Improper growth of ovary in P-L-

(control) and P-L+ (at different doses) females. Statistical significance was calculated by using an analysis of

variance (ANOVA) followed by Tukey Kramer MSD post hoc test (MSD α0.05 = 85.4).

https://doi.org/10.1371/journal.pone.0178051.g005
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early stage larvae of F1 generation were fed with AgNPs (Fig 6B). As a consequence of larval

mortality, adult emergence was also reduced significantly (Fig 6C).

The mortality rate during larval stages in F2 generation followed dose-dependent impact of

AgNPs as observed in F1 generation parents. These results strongly suggest that if parents are

fed with higher doses of AgNPs early during development, the effect gets carried over to the

next generation.

4. Discussion

With the advent of newer applications of AgNPs, their frequent exposure to human through

consumer goods without detailed understanding of their impact remains a major concern. In

order to address this emerging consensus about the putative health risks associated with their

long term application, a detailed and systematic in vivo study was conducted using Drosophila
melanogaster as a model system. In view of the short lifespan and significant concordance with

human, Drosophila is a very convenient model for trans-generational in vivo studies.

The commercially manufactured AgNPs (35nm) from Sun Innovations Corp., USA was

used to investigate the dosage effect in the present study. As a mandate to monitor nanotoxi-

city, physico-chemical characterization of these commercially purchased AgNPs was carried

out. TEM and DLS studies demonstrated that AgNPs used in present study are spherical in

Fig 6. Trans-generational effect of AgNPs. (A) Hatching rate of first instar larvae of F2 generation in the absence of AgNPs. (B)

Percentage mortality during 2nd and 3rd larval instars and (C) Percentage of F2 adults eclosed. Significance was calculated by analysis of

variance (ANOVA) followed by Tukey-Kramer MSD post hoc test (MSD α0.05: Larval mortality = 27.6; F2 adult eclosion = 12.09).

https://doi.org/10.1371/journal.pone.0178051.g006
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shape with a size distribution range of 20-100nm and hydrodynamic diameter of 252 nm. Fur-

ther, the zeta potential measurement of dispersed AgNPs in deionized water indicated that

these nanoparticles are moderately stable. All these physico-chemical measurements strength-

ened the present study to evaluate impact of AgNPs ingestion in Drosophila.

To elucidate the dosage effect of intake of AgNPs on developmental stages and time dura-

tion, first instar larvae and adults for short and long duration were administered with AgNPs

supplemented food. Our results strongly suggest that adults are more resistant to AgNPs inges-

tion as it has no effect on their survival. However, dietary intake of AgNPs in larvae affects the

rate of adult emergence and lifespan of their progeny in a dose-dependent manner. The most

alarming results were observed from intake of AgNPs during early larval stage that is being

carried forward to the next generation. A significant reduction was observed in the percentage

of larvae reaching adulthood even when reared in the absence of AgNPs supplemented food,

suggesting trans-generational effect of AgNPs.

Besides survival, the consequence of AgNPs ingestion on fertility was monitored by analyz-

ing egg laying capability and growth of the ovary of not fed and fed flies. Prolonged ingestion

of AgNPs-supplemented food in adult flies reduced their rate of oviposition in a dose-depen-

dent manner Additionally, AgNPs also interferes with the attainment of proper growth of

ovary in female flies at higher doses. It is interesting to observe that size of the ovary and egg

laying capability of F1 adult flies gets significantly affected when reared on diet at further lower

AgNPs dose. However, TEM analysis of sections of ovary from these AgNPs fed flies did not

show any deposition of AgNPs. These results suggest that the reduced reproductive ability of

AgNPs fed flies could be systemic side effect of AgNPs ingestion.

Oogenesis in Drosophila has been previously reported to be highly sensitive to the nutri-

tional alterations. Nutrition is known to play a very important role in development of ovary

and determining the female egg laying behavior [41]. The observed ovarian defect and

impaired rate of egg production of P and F1 flies by rearing them on AgNPs-supplemented

food can be well attributed to nutritional deficiency (Raj et al; unpublished data). Additionally,

the role of insulin signaling and ecdysone response pathway in regulating the ovary develop-

ment has been reported [42–44]. There is a possibility that ingestion of AgNPs may be interfer-

ing with these pathways as well that result in formation of small ovary lacking oocyte. As a

result of abnormal ovary development, an adverse impact on the reproductive fitness of the

female flies causes impaired egg laying and further development [45–46].

From our findings, it can be concluded that effect of AgNPs ingestion is dose and develop-

mental stage specific. It is interesting to observe that impact of AgNPs ingestion during early

larval stage is being retained in the next generation. The possible reason for lethality caused by

the higher dose of AgNPs ingestion during early larval stage could be due to generation of

ROS [26, 32–34]. The mechanisms through which intake of AgNPs at F1 larval stage may

cause trans-generational effect could be multifactorial. The observed phenomena of trans-gen-

erational effect could be due to impaired germ cells [47–50]. Additionally, ingestion of AgNPs

in larvae is reported to have genotoxic potential in Drosophila melanogaster [51–52], which

could also be one of the mechanisms behind the trans-generation effect.

We finally conclude that AgNPs being one of the commonly used nanoparticles in con-

sumer products and therefore, it is necessary to evaluate safe dosage to minimize human health

related issues.
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